A ROADMAP FOR ASSESSING SPATIAL-TEMPORAL UNCERTAINTY AND ECOSPACE MODEL FIT

Jeroen Steenbeek, Joe Buszowski, Dave Chagaris, Villy Christensen, Marta Coll, Kristy Lewis, Kim de Mutsert, Greig Oldford, Maria Grazia Pennino, Chiara Piroddi, Giovanni Romagnoni

BACKGROUND

- Ecospace is increasingly applied for management advice, policy exploration, and environmental impact analysis w. climate change
- Spatial-temporal uncertainty assessments are rare
- We conceptualized how to enable such assessments

FOUNDATION

- Leverage benefits of distributed computing to perform many, many Ecospace runs
- Flexible enough to use various computing and networking architectures, and programming languages
- Flexible enough to accommodate from simple to complex applications

Adding input parameter uncertainty assessments and spatial fitting to Ecospace

EwE 35 years – 2019 - St. Petersburg, FL

ROADMAP

Foresight WS 06/2019
Inventory of needs,
techniques, stats,
approaches, and
identify ways forward

Build a client-server architecture to enable remote execution, independent of OS

Connect to existing cloud-based computing platforms to allow for parallel EwE execution on different clusters

Mass-execute Ecospace to assess input parameter uncertainty

Measure the fit of Ecospace predictions when incorporating parameter uncertainty

Improve the fit of
Ecospace models by
smart perturbation of
most sensitive
parameters

